C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name : Complex Analysis

Subject Code :4SC05COA1			Branch: B.Sc. (Mathematics)			
Seme	ster: 5	Date: 22/11/2022	Time: 02:30 To 05:30	Marks: 70		
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 						
Q-1 Attem	a) b) c) d) e) f) g) h) i) npt any	Attempt the following questions: Define bilinear transformation. State fundamental theorem of algebra State ML inequality. Define harmonic unction. Show that $u(x, y) = 2x - x^3 + 3xy$ Is $w = e^{\overline{z}}$ is entire? Justify. Check whether $f(z) = 2x + ixy^2$ is Find invariant points of $w = \frac{z-1}{z+1}$. Find arc length of the curve $z(t) = x$ four questions from Q-2 to Q-8	Ta. y^2 is harmonic function. S analytic function ornot at an $t + it, t \in [-1,1].$	(14) 01 01 01 01 01 02 02 y point. 02 02 02		
Q-2	A B C	Attempt all questions State and prove necessary condition Show that $u(x, y) = e^{-2xy} sin(x^2 - Check whether \lim_{z\to 0} \frac{\overline{z}}{z} exists or no$	for function to be differential - y ²) is harmonic. t? If it exits, find its limits.	(14) 07 04 03		
Q-3	A B C	Attempt all questions Derive Cauchy Riemann equation in Find harmonic conjugate of $u(x, y)$ Prove that $f(z) = \overline{z}$ is nowhere diffe	polar form. = $y^3 - 3x^2y$. erentiable.	(14) 06 05 03		
Q-4	A B	Attempt all questions Prove that if $f(z)$ and $\overline{f(z)}$ are both must be constant throughout D. Find the analytic function $f(z) = u$ 4xy+y2.	analytic in a domain D, then + iv if $u - v = (x - y)(x^2)$	$ \begin{array}{ccc} (14) \\ (15) \\ + & 05 \end{array} $		
	С	Evaluate $\int_C \frac{z+2}{z} dz$, where <i>C</i> is the <i>C</i>	the circle $z = 2e^{i\theta}$ $(0 \le \theta \le 2\pi)$. 04		

Q-5	А	Attempt all questions Find $\int \pi \exp(\pi \bar{z}) dz$ where C is the boundary of the square with	(14) 05
		vertices at the points $0,1,1+i$ and i, the orientation of C being in the positive direction	
	В	Show that if C is the boundary of the triangle with vertices at the points 0, 3i and -4, oriented in the counterclockwise direction (starting from 0),	05
		then $\left \int_{\mathcal{C}} (e^z - \bar{z}) dz\right \le 60.$	
	С	Find the value of integral $\int_C z^2 dz$ where C is contour which is a part of $y = x^2$ from $z = 0$ to $z = 1 + i$.	04
Q-6		Attempt all questions	(14)
	А	State and prove Morera's theorem.	05
	В	Evaluate $\int_{C} \bar{z} dz$, where <i>C</i> is the line segment from $z = 1 - i$ to $z = 3 + 2i$	05
	С	Evaluate $\int_C \frac{z}{9-z^2} dz$, where <i>C</i> is the positively oriented circle $ z = 2$.	04
Q-7		Attempt all questions	(14)
	А	State and prove Liouville's theorem.	05
	В	Let <i>C</i> be the circle $ z = 3$, described in the positive sense. Show that if $a(z) = \int_{-\infty}^{2S^2 - S - 2} ds (z \neq 3)$ then $a(2) = 8\pi i$	05
	С	$g(z) = \int_{C} \frac{z}{\int_{C} \frac{z}{(1-z)^4}} dz, \text{ where } C: z = 2.$	04
0-8		Attempt all questions	(14)
X °	А	Find the image of $ z + 1 = 1$ under the transformation $w = \frac{1}{z}$ and draw	05
	В	its rough sketch. Find mobious transformation that maps the points $z_1 = -1, z_2 = 0, z_3 =$	05
	С	1 onto $w_1 = -i$, $w_2 = 1$, $w_3 = i$ respectively. Transform the curve $x^2 - y^2 = 4$ under the mapping $w = z^2$.	04

